Meep (software)

From Wikipedia, the free encyclopedia
Meep
Developer(s)ab initio research group, Massachusetts Institute of Technology
Initial release2006; 18 years ago (2006)
Stable release
1.28.0 / November 10, 2023; 6 months ago (2023-11-10)
Repositorygithub.com/NanoComp/meep
Written inC++
Operating systemLinux, macOS
TypeSimulation software
LicenseGNU General Public License
Websitemeep.readthedocs.io/en/latest/

Meep (MIT Electromagnetic Equation Propagation) is an free and open-source[1] software package for electromagnetic simulations, developed by ab initio research group at Massachusetts Institute of Technology in 2006. Operating under Unix-like systems, it uses finite-difference time-domain method with perfectly matched layer or periodic boundary conditions for field computation.[2]

Meep supports dispersive, nonlinear and anisotropic media, and features subpixel smoothing and parallelization, as well as an embedded frequency-domain solver for steady-state fields and eigenmode expansion.[2] The package was subsequently expanded to include an adjoint solver for topology optimization and inverse design,[3] and a Python interface.[4]

The software is widely adopted by optics and photonics communities,[5] with applications including the analysis and design of metalenses[6][7] and photonic crystals.[8][9]

See also[edit]

References[edit]

  1. ^ "Meep: License and Copyright". meep.readthedocs.io. Retrieved May 1, 2024.
  2. ^ a b Oskooi, Ardavan F.; Roundy, David; Ibanescu, Mihai; Bermel, Peter; Joannopoulos, J.D.; Johnson, Steven G. (March 2010). "Meep: A flexible free-software package for electromagnetic simulations by the FDTD method". Computer Physics Communications. 181 (3): 687–702. doi:10.1016/j.cpc.2009.11.008.
  3. ^ Hammond, Alec M.; Oskooi, Ardavan; Chen, Mo; Lin, Zin; Johnson, Steven G.; Ralph, Stephen E. (2022). "High-performance hybrid time/frequency-domain topology optimization for large-scale photonics inverse design". Optics Express. 30 (3): 4467–4491. doi:10.1364/OE.442074.
  4. ^ "Meep: FAQ". meep.readthedocs.io. Retrieved May 1, 2024.
  5. ^ McCoy, Dakota E.; Shneidman, Anna V.; Davis, Alexander L.; Aizenberg, Joanna (December 2021). "Finite-difference Time-domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering". Micron. 151: 103160. doi:10.1016/j.micron.2021.103160.
  6. ^ Arbabi, Amir; Horie, Yu; Ball, Alexander J.; Bagheri, Mahmood; Faraon, Andrei (2015). "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays". Nature Communications. 6: 7069. arXiv:1410.8261. doi:10.1038/ncomms8069. PMID 25947118.
  7. ^ Zhou, You; Zheng, Hanyu; Kravchenko, Ivan I.; Valentine, Jason (2020). "Flat optics for image differentiation". Nature Photonics. 14 (5): 316–323. doi:10.1038/s41566-020-0591-3. OSTI 1619041.
  8. ^ Goban, A.; Hung, C.-L.; Hood, J. D.; Yu, S.-P.; Muniz, J. A.; Painter, O.; Kimble, H. J. (August 2015). "Superradiance for Atoms Trapped along a Photonic Crystal Waveguide". Physical Review Letters. 115 (6): 063601. arXiv:1503.04503. doi:10.1103/PhysRevLett.115.063601. PMID 26296116.
  9. ^ Wu, Long-Hua; Hu, Xiao (June 2015). "Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material". Physical Review Letters. 114 (22): 223901. arXiv:1503.00416. doi:10.1103/PhysRevLett.114.223901. PMID 26196622.

External links[edit]